Additive Manufacturing of Catalyst Substrates for Steam–Methane Reforming
نویسندگان
چکیده
منابع مشابه
Application of Additive Manufacturing in Marine Industry
The advantage of additive manufacturing (AM) (e.g. reasonable time and expense in prototyping, and reliable product) has triggered the idea of using this method in manufacturing of marine vessels components. The current article tries to introduce basic concepts of AM method and its application in marine industry; have a glance at additive-manufactured parts microstructure; elaborate the challen...
متن کاملImplicit modeling for additive manufacturing
Additive Manufacturing (AM) technology distinguishes itself from more traditional fabrication processes by several significant factors. It allows the creation of objects with complex geometry that would not be possible by subtractive manufacturing or molding. Additionally, 3d printers are of much simpler use than other tools. Finally, since the cost per objects does not change depending on the ...
متن کاملTopology Optimization for Additive Manufacturing
This paper gives an overview of the issues and opportunities for the application of topology optimization methods for additive manufacturing (AM). The main analysis issues discussed are: how to achieve the maximum geometric resolution to allow the fine features easily manufacturable by AM to be represented in the optimization model; the manufacturing constraints to be considered, and the workfl...
متن کاملSustainability Characterization for Additive Manufacturing
Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use fo...
متن کاملZnO Nanowire-supported Ag Catalyst for Methanol Steam Reforming
Alternative energy sources, such as various fuel cell technologies, have attracted intense attention due to their high efficiency and low emissions of pollutants. Methanol, with its high hydrogen/carbon ratio, low sulfur content and the absence of carbon–carbon bonds, has been identified as a highly suitable source for onboard production of hydrogen [1]. Among several reactions for converting m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Engineering and Performance
سال: 2017
ISSN: 1059-9495,1544-1024
DOI: 10.1007/s11665-017-2859-4